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The plane one-dimensional photon transport equation is solved for the scattered y- 
radiation flux in the case of two adjacent media. One medium represents a natural ground 
with uniformly distributed potassium, uranium, and thorium y-ray emitters. The other 
medium is air with no radioactive contaminants. The solution method is the double-P, 
approximation with equidistant lethargy mesh. By this approach, which is discussed in 
some detail, it is possible to calculate the complete terrestrial y-radiation field in an economic- 
al way. Calculated ground-level y-ray exposure rates for igneous rocks with effective 
atomic numbers in the range 13.1 to 15.5 are presented. 

I. MTR~DUCTI~N 

Prediction of the radiation flux from the natural y-ray emitters in the ground can be 
done through solution of Boltzmann’s transport equation. We shall make the basic 
idealization of the problem geometry indicated in Fig. 1: Two semi-infinite, homo- 
geneous media, 1 and II, border on each other along a plane interface a-a under 
which there are spatially uniform emitters with a composite line spectrum in the 
general case. For such a two-medium problem the double-P, polynomial expansion 
method provides an efficient solution. The double-P, approximation (DPI) has been 
used by others to solve related problems: Bennett and Beck [3] compared DPI with 
other polynomial expansion methods, Beck and de Planque [1] used DPI (and P3) 
approximations to calculate exposure rates; and Gerstl [5, 61 solved a photon 
transport problem for a uniform slab in vacuum using DPI. The present model is a 
considerable improvement of an earlier version [IO, 141 for which we have 
experimental confirmation [ 131. The calculation procedure differs significantly from 
those in [3, 5, IO]. In particular the low-energy tail of the flux spectrum is calculated 
very efficiently. Although we developed a program system specifically for the terrestrial 
radiation field, we believe that the model may be useful in fallout or shielding calcu- 
lations as well. The uncollided part of the radiation flux can be calculated analytically, 
so here we shall consider the scattered component only. 
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2. DPl APPROXIMATION TO THE TRANSPORT EQUATION 

A brief formulation of the double-P, approximation for photon transport is given 
below in a notation similar to that used in [5]. The plane one-dimensional photon 
transport equation is 

(w ajaz $- p(z, A)) I(z, w, A) 

A 

=J’ i 
/(z, w’, A’) k(z, A’, A) S(l + A’ - X - Q * s2’)/27r da’ dh’ 

A-2 4n 

--- Q(Z, a, 4, -co<z<a3. (1) 

Here I is the differential and angular energy flux of photons, and z is the distance 
along the z-axis (Fig. I). Sz is a unit vector in the direction of photon movement, 
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FIG. I. Geometry for the two-medium y-ray transport problem. 

w = cos 0 = i . SL, where i is the z unit vector. h is the wavelength in Compton units, 
p is the total macroscopic cross section without coherent scattering, and Q is the 
differential and angular density of the energy emitted from the sources. The kernel in 
the scattering integral is given by the Klein-Nishina formula 

k(z, A’, A) = 3/8 n,(z) o. ii’/x (h/h’ + h’/h - 1 f (1 - h i A’)‘) (2) 

for h - 2 < X’ < X, and 0 otherwise. X’ is the wavelength prior to scattering, and n,(z) 
is the electron density. u0 denotes the Thomson cross section in the free-electron model, 
but here we permit a slight variability, (TV = o&z, h’), with elemental composition 
(and consequently with z) and with ;\‘. It is then possible to integrate (2) up to match 
exactly the incoherent scattering cross section taken from a standard tabulation. The 
energy flux I may be split into an uncollided part U and a scattered part Y: 

+-, w, 4 = U(z, w, A) + Y(z, w, A), 
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where Y satisfies the transport equation 

A 

=s s 
[Y(z, w’, A’) -c U(z, w’, A’)] k(z, A’, A) 

h-2 4v 

. 6(1 + A’ - /I - 51 . Q’)/2rr da’ dh’, --co<z<cQ, (3) 

with the boundary conditions 

KkQJ, w 4 < a, t4a) 
Y(-0, w, X) = Y(i0, w, A). t4b) 

The basic idea of the double-P, technique is to expand the upstreaming and the 
downstreaming flux in separate half-range spherical harmonics. Let Y*(z, w, A) = 
Y(z, W, A) H(&w), where H(X) is the Heaviside function, such that Y(z, w, A) = 
y+(z, w, A) + ‘y-(z, w, A) for all w. The proper form of the expansion is 

Y*(z, w, A) = f (21+ I) Yl*(z, A) PL*(w) (5a) 
Z=O 

with the half-range moments given by 

Yz*(z, A) = j* Y(z, w, A) P,*(o) dw, t5b) 

where we have used the abbreviations 

Pi*(w) = PJ2W F 1) H(fw), 
s j 

+ = l ) 
- 0 

and 
.r =I ; 0 -1 

PC stands for the usual Legendre polynomials. If (5a) is substituted in (3), and 
6(1 + A’ - X - a * !X)/27r expanded in full-range spherical harmonics in Q . SIP’, 
the result is an infinite set of interlinked integrodifferential equations satisfied by 
Yy,*(z, A): 

&l/(21 + 1) aY:l/az zt tau,*/az + tu + I)/(21 + 1) m;,/az + p(z, A> Y,’ 

= + f (2n + 1) czz j" w, A', A) p,(r) 
V&=0 A-2 

. ;, (2~ + l)[(Ym+ + Urn’) c;m + t‘ym- + Urn-1 Gnl dh’, l = 0, 1, L.. . 

(6) 

Here we have introduced the scattering cosine y, which for Compton scattering is 
equal to 1 - h + A’. U,* are expansion coefficients for the two components Us of the 
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uncollided flux U, defined in the same way as in (5); they are supposed to be calcu- 
culated analytically from U. Y,* and U,+ are both functions of z and h’. The numbers 
c,l,, are defined as the integrals J’ P,(w) Pm*(w) do; properties of the half-range 
spherical harmonics P,*(w) and of c& are listed, e.g., in [5]. From among the different 
ways of truncating (6) to obtain a DPI approximation we have chosen to set 
Y,* = UL* = 0, VI > I. This leaves us with a set of four equations to be solved for 
the four functions YO*(z, ;\j and Yr(z, h). We collect these flux components in a vector 

Similarly we define 

uk 4 = (uo+(z, 4, UIT(Z, A>, uo-(z, 4, u,-(z, A)) Ob) 

and obtain a single matrix equation: 

W(z, Wz = pL(z, 4 M+(z, 4 

+ 1’ 4, K 4 P(Y)(+(z, A’) + ~(2, 0 rlhf, (8) 
A-2 

where 

M= (9) 

As indicated, P(y) is a matrix whose elements depend on the scattering cosine y; 
in fact we have 

WY) = (10) 

where 

a = 3A - 3C, b = 9C - 9E, c = 3B + 30, d = 9D - SF, 

e = -A + 3C, f = -3C$9E, g = -B - 30, h = -30 + SF, 

and where the new coefficients are the infinite series 
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with 
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Although stated here as infinite sums, these coefficients are expressible in analytic 
form in terms of y; we shall return to this point later. 

3. COMPUTATIONAL PROCEDURE 

The numerical method for the solution of Eq. (8) is a nested procedure with the 
wavelength h in the outer loop and the distance z in the inner. We shall first consider 
the outer integration, which starts at the shortest wavelength (highest energy in the 
source spectrum) and terminates when some cutoff limit is reached. 

Traditional methods use an equally spaced wavelength mesh either in the total 
range or in different parts of it. Advantages of this method are: 

(i) Values of y = 1 - h + h’ are confined to an equidistant grid in [- 1, 11, 
which means that the elements of P(y) can be precalculated from (11); 

(ii) the scattering integral in (8) extends over a fixed number of steps dh, thus 
promoting an easy and a stable quadrature procedure; and 

(iii) the eigenvalue problem is 2 x 2 block diagonal. 

A drawback is that such a mesh leads to an excessive number of integration points 
at low energies so that the cost of calculation increases roughly 10 times when the 
energy cutoff is lowered from 100 to 10 keV. Jn [lo] this imposed a practical limit in the 
cutoff of 100 keV. Others, e.g., [3], work with subintervals in which the step length dX 
is constant, and, when proceeding to the next subinterval, dh is doubled. 

Our present model uses a logarithmically constant energy (or wavelength) mesh, 
which we believe is close to an optimal strategy. In other words, if lethargy is defined 
as u = log h, then the lethargy mesh is equidistant. An obstacle against the im- 
plementation of such a scheme is the loss of the advantages (i), (ii), and (iii) of the 
equidistant-h model. We shall describe a general semianalytical wavelength integration 
technique which overcomes these three problems and comprises the equidistant- 
lethargy mesh as a particular case. 

In the first place, Gerstl has shown that the infinite series in (1 l), s(c,i, , c&J, can 
be expressed in closed form; in [7] he gives recursion relations and quotes these 
“anisotropy functions” up to 1 = m = 7. As functions of the scattering cosine y, 
the anisotropy functions not only pertain to photons but also have general interest 
in particle scattering [6]. In the present work we shall need only the two functions 

A(y) = l/97 arcsin y f &, 

E(y) = (3 + 4y)/(37r) arcsin y + 4/(37i-) (1 - y*)l/’ - 1/3y ~ g. 
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(Short proofs of these formulas are given in [1 11.) B, C, D, and F are connected with 
A and E by simple relations quoted in [lo]. The final expressions for the elements 
(a,..., h) of P(y) are shown in the Appendix, and they are simply calculated each time 
they are needed. Thus Gerstl’s anisotropy functions are of significant importance for 
the successful implementation of our equidistant-u model. 

In the second place we consider the quadrature process for estimation of the 
scattering integral in (8) 

jk A) = j” k(z, A’, h) P(y) +(z, A’) dh’ (12) 
A-2 

at the current wavelength point h = Xi. A simple discrete rule, e.g., trapezoidal, 
in which the functions are computed at the mesh points, is unstable and will fail at 
low energies. This is because the complete Compton shift (hi - h’ = 2) for small 
energies becomes comparable with the wavelength step dh, if du is constant; or even 
worse, it may be contained wholly within the step. It is much better to evaluate (12) 
using the analytical form of the Klein-Nishina kernel and the anisotropy functions. 
We change the integration variable from h’ to y and suppress the argument z. Then 
k(z, A’, A) = k,,(y) K(y. h), where k,(y) = 3/8 n +T,, depends slightly on y through u0 , 
and where 

K(r, A) = +3 + (h-2 - h-1 + l)y2 + (-2X-’ + X-l>y + P - h-l -f l. 

The variability of k, is attached to +(y) = +(z, h’), assuming that the product 
k,(y) +(y) varies linearly in each interval [rl , y2] between two adjacent mesh points 
for y: 

The contribution to (12) for this interval is 

s 

Yq 
k,(y) ‘+‘, A) p(y) d’(y) dy = w,+(y,) + w,+,(y,). 

Yl 
(13) 

If the indefinite matrix integrals F(y) = s K(y, A) P(y) dh and G(y) = s YK(Y, h) P(y) dy 
are introduced, the “weight matrices” in (13) can be written as 

WI = MYI)/(Y, - ~,~hdF(y,) - F(y,N - My,) - G(yJ)l, 

W, = ‘UY~)/(YP - YJ-y,(Wz) ~ WY,)) + WY,) ~ G(y,))l. 

(144 

(14b) 

(If the interval [rl , rz] encompasses the value y = y,, corresponding to the lower 
limit in the integral (12), F(y,) and G(y,) in (14) should be replaced by F(y,) and 

G(Y,)). 
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After (12) is computed, Eq. (8) reduces to a vector equation in z for the flux at 
h = Xi (suppressed in the notation below): 

d+(z)/dz = B+(z) + C(Z). (15) 

Solution of (15) makes up the inner loop of the procedure. The term 4(z) depends on 
the sources for the problem and is composed of real sources and a scatter-in contri- 
bution from shorter wavelengths. Up to now, we have not specified the source term 
Q(z, w, h) in (1). In the following we shall assume that 

Q(z, w, A) = EL’-z) C qa/4n 6(E - E,). (16) 

Equation (16) states that the source has a discrete line spectrum (E = l/h = energy, 
E, = energy of line no. p) and is confined to medium I (z < 0). Further, the inter- 
action cross section p(z) = ~(z, hi) is assumed to be a piecewise constant function 
of z, p(z) = pI for z < 0 and p(z) = prI for z > 0. On these assumptions the 
uncollided flux U(z, w, X) and its half-range moments U*(z, X), and hence also 4(z), 
can be calculated analytically. The results, which involve exponential integrals, are 
given in [lo]. The matrix of the differential equations (15) can be written as 
B = p(z)M + R(z), where both p and R are constant in each medium. R can be 
interpreted as a perturbation matrix originating from the scattering integral (12). 
Contributions to R come exclusively from the wavelength interval [A,-, , Xi] and are 
normally small. If pointwise quadrature had been applied to (12) instead of an ana- 
lytical technique, R would have been proportional to M, thus preserving the 2 x 2 
block diagonality for B, and (15) could be solved by simple decoupling as in [lo]. 
Our third problem is that we get “fill-in” into the bidiagonal blocks of R as a conse- 
quence of the analytical operations on (12). This is a minor complication, because it is 
still true that the eigenproblem for B only involves solution of a quadratic equation. 
To see this, we note that B is of the general class (10) ((a,..., h) are in this context 
arbitrary numbers) because B is the result of scalar operations (including integrations) 
on M and P(y). The characteristic polynomial for such a matrix is 

p(u) = a4 + cc2 - ~2 + h2 - f2 - 2be - 2dg) u2 + (d + &I2 

+ (be + &)2 - (bg + a/~)~ - (cf + dej2 - 2(Qe - cg)(bf - dh). 

In the limiting case R = 0 there are two pairs of real roots (CI = &(3 i 31j2) p(z)), 
and for /j R /I not too large this will still be the case. Hence the eigenvalues 
(0.1 5 02 3 (33 3 u4} can be ranked such that u1 < u2 < 0 < u3 < u4 with uI =z -u4 
and u2 = -u3. Diagonalization of (15) results in the transformed equation 

dx(z)Pz = Cx(z) + Y-wz), (171 

where C = diag{u, , u2, u3 , u4}, and the transformation matrix Y contains the 
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eigenvectors as columns. There is an equation (17) for each medium (p = 1, 2), and 
each represents four (m = 1, 2, 3,4) independent scalar equations: 

Also in the z-integration analytical tools are used to some extent. To simplify notation, 
we shall drop the indices m and p. Then (I 8) has the complete solution 

X(z) = exp(gz) [J’ exp(-uz) h(z) dz -+ Cl. (19) 

The analytical form of X(z) is not a simple one because h(z) is a complicated function: 
It contains exponential integrals with rapidly increasing complexity as the wavelength 
integration proceeds. Therefore, an approximate method is applied. The source term 
is written as a stationary term plus a decaying exponential multiplied by a polynomial 
of degree k: 

W a I?, + exp(cYz) i hjzj, m 
i=O 

where a II> 0 if p = 1 and a: < 0 if p = 2. h, can be found analytically, while the 
other parameters must be determined in the least-squares sense: Operating with a 
fixed set {zJ of points in the medium we first calculate h(zi) from the solution in zi 
at shorter wavelengths, and thereafter we execute the semilinear least-squares proce- 
dure described by Kirkegaard and Eldrup [9]. This procedure iterates on the non- 
linear parameter N only and is therefore fast. (However, in the low-energy range, 
(I could safely be fixed to a precalculated value, thereby increasing both speed and 
stability.) We have selected the point set {zi] in such a way that the distances from the 
interface z = 0 increased logarithmically; further details of the fitting procedure are 
given in [IO]. Merging (19) and (20) leads to the following solution for the transformed 
flllx: 

X(Z) = X, -I- C exp(az) --I- exp(mz) f f~~zi, 

where 

Kk = h&a - a), 

Kj = (hj - (.i + I) Kj+J/(N - u), j = k-1 ,..., 0. 

(21) 

Precautions are taken to keep I N - 0 / greater than some small number E. The 
integration constants C = &, are determined from the boundary conditions (4); 
from (4a) and the signs of the eigenvalues we infer that C,, = C,, = CS2 = C,, = 0. 
The other condition is a little more complicated to express. Since the transformation 
matrix Y = Y,, depends on the medium, we must equalize the untransformed fluxes 
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+(fO) and not x. The result is that the remaining four constants, collected in the 
vector c = (C,, , C,, , C,, , C&, satisfy the 4th-order system 

y*c = Y& - Y,xT 

where x”, is the value that the transformed flux vector in medium p would assume for 
z = 0, if C = C,, were zero in (21); the coefficient matrix Y* has its two first colums 
equal to the two first in -Yp , and the two last columns equal to the two last in Y, . 
We might, finally, be interested in handling the particular case in which medium IT 
is vacuum. Condition (4b) is then replaced by the requirement that Y(0, w, h) = 0 for 
o < 0, i.e., the “downstreaming” moments YO- and ul,- are set to zero for z =: 0. 

It may be asked how the accuracy and the computing efficiency of the model 
described compare with what is obtained by conventional integration schemes for the 
photon transport equation. To a first approximation we can study this problem 
independently for the three variables w, z, and X. 

Errors in the angular flux distributions are mainly due to truncation errors in the 
DPl approximation itself. Concerning the z-integration, we have tested our least- 
squares procedure using nine points in each medium and a fitting polynomial of the 
second degree in (20). Dose rates in air at various heights were computed, and from 
Table I it is seen that the results agree well with similar data obtained by Beck and 
de Planque [1], who used a purely numerical integration method. 

TABLE I 

Absorbed Dose Rates (1 MeV;g/sec = 66.37 pR/hr) Calculated for 
Terrestrial Potassium-40 y  Radiation (cf. [I]) 

Dose rate (MeV,‘gpec) 

2 6-4 This work Beck and de Planque [I ] 

0 0.438 0.436 
30 0.317 0.316 

100 0.185 0.185 
300 0.0506 0.0499 

It remains to consider the effect of our treatment of the wavelength X, which is the 
crucial point in the model. Of particular interest is to compare the equidistant- 
lethargy scheme with the equidistant-wavelength scheme. For this purpose we coded 
both procedures identically in all respects other than the X-integration. 

We computed the spectral distribution of potassium y radiation at the interface 
between air and soil down to 40 keV. The constant-Ah model was run with dh = l/7 
(case I) and the constant-Au model with du = 0.06 (case II), leading to 89 and 61 
mesh points, respectively. As the cost per mesh point was almost 50% greater in 
case II, the two computations represented roughly the same total work. The low- 
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energy part of the computed spectra is shown in Fig. 2 together with a reference 
calculation with an adjoint Monte Carlo code based on a work of Kales [8] 
(SD m 1.7 % in each spectral channel). 

The results from II lie significantly closer to the Monte Carlo spectrum than those 
from I. The difference between the two DPI spectra is about 4 % over most of the 
range. The models are consistent in the sense that the spectra would coincide if both 
meshes were made arbitrarily fine. We also computed the energy flux integrals from 
40 keV to 1.461 MeV of spectra 1 and II and compared them with the integral of the 
Monte Carlo spectrum which was normalized to I .OOO (with SD e 0.002). The 
results were 1.030 in case I and 0.995 in case II. 

.  : .  
, :  y, 

.  .  
3. 

- 

DPI equidistant-wavelength (II 

DPl equidistant- lethargy III) 1 
Monte Carlo 

0.2 0.3 0.L MeV 

FIG. 2. Spectral distribution below 0.5 MeV of scattered potassium-40 y  radiation at the interface 
(energy flux). 

A closer investigation reveals that the poorer accuracy in case 1 stems from the 
discretization error committed in the evaluation of the scattering integral at high 
energies, where the Klein-Nishina kernel k(z, h’, h) is a strongly convex function 
of h’ owing to the marked anisotropy. The error propagates down to the low energies 
and gives a bias to the entire spectrum. Such a discretization error does not exist 
in case II where the scattering integral is evaluated semianalytically. Admittedly 
another error arises here, because k,(y) +(z, h’) is linearized between the mesh points. 
This error is, however, of the second order when k,(y) +(z, h’) varies slowly compared 
to k(z, h’, X), as it actually does in most of the range. Exceptions are the steps which 
include a discontinuity point for +(z, X’) or a/ax’+(z, A’). 

The stability of our method with respect to the length of the step du is in practice 
unlimited. In the example of Fig. 2 the eigenvalues were all real for any value of du. 
Even with du = 0.24 the correct spectrum was fairly well reproduced and the 
normalized flux integral was found to be 0.989. However, computations on general 
terrestrial radiation problems with many source lines require a much smaller du. 

It is important to notice that the constant-Au procedure is only one out of many 
possible integration schemes based on the semianalytical technique. One could in 
principle use any nonequidistant set of wavelength points and, for instance, take 
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very small steps where the flux is known to have jumps. These possibilities were not 
exploited in this work in which the equidistant-lethargy scheme proved to be a reason- 
able compromise between simplicity and overall efficiency. 

4. RESULTS 

A FORTRAN program GAMPl has been written based on the method described. 
The output from this program is the parameters in (21) for the transformed flux 
components together with the transformation matrix Y. With these data given for 
both media and for all the mesh points of h it is easy to evaluate the expansion coeffi- 
cients YO*(z, X) and YI*(z, X) for all z and h. Subsequent use of the truncated form of 
(5ah 

Y(z, w, A) 23 Y&z, A) + 3Yl ‘(z, h)(2w - l), O<w<l, 

e Yo-(z, A) + 3Y1-(z, h)(2w + l), --I <w<o, 

will permit a reconstruction of the complete radiation field. Another program, GFX, 
calculates the integral field quantities flux and dose for arbitrary z, using the GAMPI 
output. The y-ray sources are supposed to be potassium-40 or the emitters in the 
natural decay series of uranium and thorium. Auxiliary programs have been written 
for handling of input data, and the complete program system is described in [I 11. 
It is in operation at the Burroughs 6700 installation at Rise and is available from the 
NEA Data Bank. 

Figures 3-6 illustrate various features of the scattered part of a terrestrial y-radiation 
field. From plots like these it has been demonstrated that such a field is described in 
sufficient detail by using a lethargy step of LIU = 0.03 and a fitting polynomial 
degree of k = 2 in (20), and also that a cutoff energy of 20 keV is reasonable. The 
spatial variations of the four DPI moments are exemplified in Fig. 3. Figure 4 shows 

“0 - 
r v; 

1 MEDIUM I j MEDIUM II 
/ (SOIL1 IAIR1 

FIG. 3. Spatial variation of the DPI moments for scattered uranium y  radiation at 700 keV. 



31 TERRESTRIAL y RADIATION 

i 

/ *i 

z=-50 cm 

\ 

0.03 0.10 0.30 1.00 MeV 

FIG. 4. Spectral distributions of scattered uranium y  radiation (energy flux). 

the spectral distribution of scattered uranium y-radiation in the soil (z = -50 cm), 
at ground level (z = 0), and high up in the air (z = 200 m). It is seen that this 
variation in z is accompanied by a loss of radiation intensity and spectral detail, 
and there is a spectral shift towards lower energies. These phenomena are further 
illustrated in Fig. 5, and Fig. 6 demonstrates the omnidirectional nature of a scattered 
flux of low-energy y rays. 

Table II shows the exposure rates at z = 1 m per unit concentration of potassium, 
uranium, and thorium in typical soil (assuming radioactive equilibrium in the 
uranium-thorium decay series). Agreement is found with the results of Beck and 
co-workers [2]. 

The predominant y-ray interaction mode in soil or rock is incoherent scattering. 
However, a significant concentration in the ground material of a heavy element such 
as iron increases the proportion of photoelectric absorption at low energies. The 
absorption properties of a mixture of elements are conveniently expressed in terms 

FIG. 5. Spectral and spatial distribution of scattered potassium-40 y  radiation (energy flux). 
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FIG. 6. Angular distributions per unit solid angle of scattered uranium y  radiation at 100 keV 
reconstructed from the DPl moments. Top orientation corresponds to 6’ = 0” (W = 1). 

TABLE 11 

Calculated y-Ray Exposure Rates from Potassium, Uranium, and 
Thorium 1 m over Typical Soil 

Exposure rate (@/hr) 

This work Beck et al. [2] 

l%K I .505 I .49 
1 PpmU 0.619 0.62 
1 PpmTh 0.305 0.31 

TABLE III 

Y-Ray Exposure Rates at 1 m from Potassium, Uranium, and Thorium 
for Four Types of Igneous Rocks 

Rock type 

Exposure rate (pR/hr) 
Iron content 

(%I Zff  WI l%K 1mmU 1 ppm Th 

Granite 2.5 13.1 1.519 0.622 0.306 
Syenite 4.4 13.9 1.516 0.618 0.304 
Gabbro 6.8 14.8 1.511 0.613 0.302 
Plateau basalt 10.1 15.5 1.508 0.610 0.300 
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of an effective atomic number, Zen [12]. In Table III four types of igneous rock of the 
compositions given in [4] are considered. It appears that the exposure rates produced 
by unit radioelement concentrations show only small, though significant, decreases 
when Zefe increases from 13.1 to 15.5. 

5. CONCLUDING REMARKS 

We have presented an efficient method of solving the double-P, equations for 
photon transport in plane semi-infinite geometry. Use of an equidistant lethargy mesh 
with a piecewise analytical treatment of the scattering integral has been combined 
with a semilinear least-squares technique for the space coordinate to produce a fast 
and numerically stable procedure. Application of Gerstl’s analytic anisotropy 
functions instead of truncated series ensures the exact angular representation of the 
very anisotropic Klein-Nishina kernel. The program system GAMPl/GFX has been 
applied for various assessments about flux and exposure for terrestrial y-radiation 
fields. Within the same computational framework it is possible to consider other 
source geometries. For example, both media could be active and a spatial variation 
could be allowed. By such straightforward extensions, fallout or shielding problems 
could also be studied. 

APPENDIX 

Matrix elements of P(y): 

a= fdn arcsin y + 312 - 312 y, 
b= -(I8 + 12y)/n arcsin y - 12/r (1 - y2)li2 + 9/2 + 15/2 y, 
C= --6/T? arcsin y + 312 + 312 Y, 
d= -(18 - 12y)/r arcsin y + 12/n (I - y2)liz - 9/2 + 15/2 7, 
e= -4/lr arcsin y - l/2 + 312 y, 
f= (12 + 12y)/n arcsin y + 12/n (1 - y2)li2 - 9/2 - 9/2 y, 
g= 4/n arcsin y - l/2 -- 312 y, 
h== (12 - 12y)/~ arcsin y - 12/n (1 - y2)ri2 + 9/2 - 9/2 y. 

Formulas for f xn arcsin x dx = S,(x) arcsin x + T,(x)( 1 - x2)lj2 

n snw Tn(x) 

0 x 1 
1 -l/4 + l/2 x2 1/4x 
2 l/3 x3 219 + l/9 x2 
3 -3132 + l/4 x4 3132 x + l/16 x3 
4 l/5 x5 8175 + 4175 x2 + l/25 x4 
5 -5196 + I/6 x6 5196 x + 51144 x3 + l/36 x5 
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Formulas for j ~“(1 - x2)1j2 dx = U, arcsin x + V,(x)(l - x2)“’ 

n un V?dx) 

0 l/2 l/2 x 
1 0 -l/3 + l/3 x2 
2 l/S --1/8x+ 1/4x3 
3 0 --2/H - l/15 x2 t- 1/5x* 
4 l/16 -l/16 x - l/24 x3 + l/6 x5 
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